SYNTHESES AND PROPERTIES OF KANAMYCIN C DERIVATIVES ACTIVE AGAINST RESISTANT BACTERIA

Sir:

The enzymatic mechanism of resistance to aminoglycoside antibiotics has been explored by UMEZAWA.^{1,2)} Many clinically isolated strains of aminoglycosides-resistant bacteria produce enzymes which phosphorylate, adenylylate or acetylate specific positions of aminoglycoside antibiotics. Kanamycin and kanamycin B are inactivated by aminoglycoside 3'-phosphotransferases, 2"-nucleotidyltransferase or 6'acetyltransferases. Furthermore, it has been shown that the 3'-phosphotransferase-producing bacteria are inhibited by 3'-deoxy derivatives of these antibiotics and 2"-nucleotidyltransferaseproducing bacteria by the 1-N-[(S)-4-amino-2hydroxybutyryl] derivatives. However, the 6'modification of these antibiotics has not yet produced derivatives which inhibit all 6'-acetyltransferase-producing strains.³⁾ Kanamycin C isolated from a culture filtrate of Streptomyces kanamyceticus as a minor component has the 6'hydroxyl in place of the 6'-amino group in kanamycin B, and is not inactivated by 6'-acetyltransferases. In this communication, we report chemical conversion of kanamycin B and its deoxy derivatives into kanamycin C and its deoxy derivatives, and synthesis of their 1-N-[(S)-4amino-2-hydroxybutyryl] derivatives.

Kanamycin B was converted into kanamycin C (I) in good yield by the following route. The free amino groups of 6'-N-BOC*-kanamycin B monohydrate4) were acetylated with acetic anhydride in methanol at room temperature for 5 hours and the BOC group was removed in 90% trifluoroacetic acid at room temperature The 1,3,2',3"-tetra-N-acetylfor 45 minutes. kanamycin B trifluoroacetate thus obtained was treated with sodium nitrite in 33 % aqueous acetic acid for 1 hour at ice temperature and then for 2 hours at room temperature. The reaction mixture was concentrated to dryness and the residue was dissolved in 2 N NaOH. After refluxing the alkaline solution for 12.5 hours. I in the solution was adsorbed on a column of Amberlite CG-50 (70% NH4+) resin and eluted with 0.5 Nammonia. Rechromatography on a Amberlite CG-50 (NH₄⁺) column eluted with 0.05 N, 0.1 N and then 0.2 N ammonia gave pure I in 49 % yield.

The deoxy derivatives, 3'-deoxykanamycin C (II) and 3',4'-dideoxykanamycin C (III) were synthesized from 6'-N-BOC-3'-deoxykanamycin B** and 6'-N-BOC-3',4'-dideoxykanamycin B⁶) by the method described above in 40% and 24% yields, respectively.

The 1-N-acyl derivatives with (S)-4-amino-2hydroxybutyric acid were synthesized from partially protonated forms of I, II and III without any protection of amino groups. In an aqueous solution at pH 6.5 ± 0.2 adjusted with 1 N HCl, I, II or III was acylated with 1.5 equivalents of the N-hydroxysuccinimide ester of N-BOC-(S)-4-amino-2-hydroxybutyric acid⁶ in dimethylformamide at room temperature for 6 hours and then the BOC group was removed in 90% trifluoroacetic acid at room temperature for 1 hour to afford 1-N-[(S)-4-amino-2-hydroxybutyryl]-kanamycin C (IV), -3'-deoxykanamycin C (V) or -3',4'-dideoxykanamycin C (VI) in 8.0%, 8.5% or 8.3% yield, respectively. These derivatives were purified by column chromatography on Amberlite CG-50 (NH4+) resin eluted with 0.2 N and 0.5 N ammonia, and on silica gel (Mallinckrodt, CC-7) developed with a mixture of chloroform, methanol and 17% ammonia (1:4:2 in volume). With the resin chromatography, unreacted I, II or III was recovered in 40%, 34% or 45% yield, respectively. From the silica gel chromatography, a positional isomer having weak biological activity, 3-N-[(S)-4amino-2-hydroxybutyryl]-kanamycin C(VII), -3'deoxykanamycin C (VIII) or -3',4'-dideoxykanamycin C (IX) was separated in 11.0%, 6.1% or 7.4% yield, respectively.

The properties of all derivatives described above are summarized in Table 1. The structures of the acyl derivatives were confirmed by PMR and acid hydrolysis⁶). On the carbon-13 Four-IER-transform NMR spectra of **I**, **IV**, **V**, **VI** and **VII**, the chemical shifts were assigned as shown in Table 2.⁷)

The minimum inhibitory concentration of I and its five derivatives are shown in Table 3.

* *tert*-Butyloxycarbonyl

^{** 6&#}x27;-N-BOC-3'-deoxykanamycin B (mp 142~ 154°C (dec.), $[\alpha]_{D}^{22}$ +111° (c 1, water), $C_{23}H_{45}N_5O_{11}$. H₂O) was prepared from 3'-deoxykanamycin B⁵) by the method reported in a previous paper.⁴)

VOL. XXX NO. 12

THE JOURNAL OF ANTIBIOTICS

D	mp (dec.)	$[\alpha]_{\rm D}$ in ${\rm H_2O}$	Malagular formula*	Rf on TLC**		
Derivative			Molecular formula*	Α	В	
II	180~220°C	+110° at 26°C	$C_{18}H_{36}N_4O_{10}{\cdot}\tfrac{1}{2}H_2O$	0.38	0.59	
III	$200 \sim 220^{\circ} C$	$+118^{\circ}$ at $26^{\circ}C$	$C_{18}H_{36}N_4O_9{\cdot}\tfrac{1}{2}H_2O$	0.49	0.66	
IV	$167 \sim 180^{\circ}C$	+91° at 26°C	$C_{22}H_{43}N_5O_{13}\cdot H_2O$	0.18	0.19	
\mathbf{V}	$151 \sim 160^{\circ} C$	$+83^{\circ}$ at $27^{\circ}C$	$C_{22}H_{43}N_5O_{12}\cdot H_2O$	0.22	0.24	
VI	$142 \sim 158^{\circ}C$	+76° at 28°C	$C_{22}H_{43}N_5O_{11}\cdot H_2O$	0.31	0.30	
VII	148~153°C	$+87^{\circ}$ at 24°C	$C_{22}H_{43}N_5O_{13}\cdot H_2O$	0.21	0.28	
VIII	136~144°C	$+80^{\circ}$ at $24^{\circ}C$	$C_{22}H_{43}N_5O_{12}\cdot H_2O$	0.27	0.36	
IX	135~147°C	$+78^{\circ}$ at $24^{\circ}C$	$C_{22}H_{43}N_5O_{11}\cdot H_2O$	0.34	0.44	

Table 1. The properties of kanamycin C derivatives

* Satisfactory results of elemental analyses were obtained for all compounds.

** Thin-layer chromatography on Silica gel G (Merck, Art 5721) using solvent A; butanol - ethanol - chloroform - 28% ammonia (4: 5: 2: 8 in volume) (kanamycin C: Rf 0.31) and solvent B; chloroform - methanol - 28% ammonia - water (1: 4: 2: 1 in volume) (kanamycin C: Rf 0.52).

Carban	Chemical shift (δ)							
Carbon	I	IV	V	VI	VII			
1	51.3	49.9	50.0	50.0	51.1			
2	36.2	33.7	33.6	33.1	34.2			
3	50.3	50.5	50.4*	50.4*	49.0			
4	87.9	87.4	87.2	87.1	81.2			
5	75.2	75.7	75.8	75.8	76.0			
6	88.5	81.1	81.5	81.5	88.1			
1'	101.3	101.4	100.5	101.0	100.8*			
2′	56.2	56.2	50.0*	50.6*	55.9			
3'	74.5	74.5	35.7	26.0	74.4			
4′	70.7	70.5	65.5	26.5	70.5			
5'	73.8	73.7	74.3	70.9	73.3			
6′	61.6	61.6	61.7	64.9	61.6			
1''	100.7	99.2	99.2	99.2	100.2*			
2''	72.6	72.4	72.4	72.3	72.6			
3''	55.1	55.0	55.0	54.9	55.1			
4''	70.0	70.0	70.1	70.0	70.0			
5''	72.9	73.0	72.9	72.9	72.9			
6''	61.2	61.2	61.2	61.2	61.1			
1'''		176.4	176.4	176.2	176.4			
2'''		70.7	70.6	70.6	70.5			
3′′′		35.2	35.3	35.2	35.0			
4'''		38.0	37.9	37.9	37.6			

Table 2. Carbon-13 chemical shifts

δ: ppm from TMS in D₂O using dioxane (δ= 67.4 ppm) as the internal reference.

* Assignments within any vertical column may be reversed.

Among these derivatives, V is most active against all bacterial strains tested. This derivative showed 73% and 25% of the bacteriostatic activity of amikacin by the cylinder plate method using *Bacillus subtilis* PCI 219 and *Escherichia coli* JR66/W677, respectively, as the test organisms. These derivatives had low toxicity; when administered intravenously, mice tolerated a single dose of 400 mg/kg of II, IV or V, but the same dose of III or VI caused death.

> Shinichi Kondo Tsuyoshi Miyasaka Kenzaburo Yoshida Katsuharu Iinuma Hamao Umezawa

Organisms	Minimum inhibitory concentrations (µg/ml)						
Organishis	I	II	III	IV	v	VI	
Staphylococcus aureus FDA 209P	6.25	3.13	12.5	6.25	6.25	12.5	
Escherichia coli NIHJ	6.25	12.5	25	6.25	6.25	12.5	
Escherichia coli K-12	12.5	12.5	50	12.5	6.25	12.5	
Escherichia coli K-12 R5 ^a)	6.25	12.5	25	6.25	6.25	12.5	
Escherichia coli K-12 ML1629 ^b)	>100	12.5	25	6.25	6.25	6.25	
Escherichia coli K-12 ML1630 ^b)	>100	12.5	25	12.5	12.5	12.5	
Escherichia coli K-12 ML1410	25	12.5	25	25	6.25	25	
Escherichia coli K-12 ML1410 R81 ^{b)}	>100	25	100	12.5	12.5	25	
Escherichia coli LA290 R55d)	>100	>100	>100	12.5	12.5	12.5	
Escherichia coli LA290 R56	50	100	>100	6.25	6.25	6.25	
Escherichia coli LA290 R64	50	50	>100	12.5	3.13	12.5	
Escherichia coli W677	12.5	6.25	12.5	12.5	6.25	12.5	
Escherichia coli JR66/W677 ^{e,d)}	>100	>100	>100	25	12.5	25	
Klebsiella pneumoniae PCI 602	6.25	6.25	50	3.13	3.13	6.25	
Klebsiella pneumoniae 22#3038 ^{c,d)}	>100	>100	>100	12.5	6.25	25	
Pseudomonas aeruginosa A3	>100	12.5	>100	12.5	6.25	12.5	
Pseudomonas No. 12	>100	100	>100	50	50	>100	
Pseudomonas aeruginosa H9°)	>100	100	>100	>100	100	>100	
Pseudomonas aeruginosa TI-13 ^b)	>100	50	>100	50	50	>100	
Pseudomonas aeruginosa GN315 ^{a)}	>100	50	>100	50	50	>100	
Pseudomonas aeruginosa 99°)	>100	100	>100	100	100	>100	
Pseudomonas aeruginosa H11	>100	50	>100	100	50	>100	

Table 3. The antimicrobial spectra of kanamycin C derivatives

Resistance mechanisms: a) 6'-acetyltransferase, b) 3'-phosphotransferase I, c) 3'-phosphotransferase II, d) 2''-nucleotidyltransferase, e) 3-acetyltransferase.

Institute of Microbial Chemistry Kamiosaki 3-Chome, Shinagawaku, Tokyo, Japan

(Received October 5, 1977)

References

- UMEZAWA, H.: Biochemical mechanism of resistance to aminoglycosidic antibiotics. Advances in Carbohydrate Chemistry and Biochemistry. Vol. 30 (ed. by R. S. TIPSON & D. HORTON), pp. 183~225, Academic Press, New York, 1974
- UMEZAWA, H.: Biochemical mechanism of resistance to aminoglycosidic antibiotics. Drug Action and Drug Resistance in Bacteria. 2. Aminoglycoside Antibiotics (ed. by S. MITSU-HASHI), pp. 211 ~ 248, University of Tokyo Press, Tokyo, 1975
- YAGISAWA, M.; S. KONDO, T. TAKEUCHI & H. UMEZAWA: Aminoglycoside 6'-N-acetyltrans-

ferase of *Pseudomonas aeruginosa*: Structural requirements of substrate. J. Antibiotics 28: 486~489, 1975

- KONDO, S.; K. IINUMA, M. HAMADA, K. MAEDA & H. UMEZAWA: Syntheses of isoseryl derivatives of kanamycins and their antibacterial activities. J. Antibiotics 27: 90~93, 1974
- TAKAGI, Y.; T. MIYAKE, T. TSUCHIYA, S. UME-ZAWA: Synthesis of 3'-deoxykanamycin B. J. Antibiotics 26: 403~406, 1973
- KONDO, S.; K. IINUMA, H. YAMAMOTO, K. MAEDA & H. UMEZAWA: Syntheses of 1-N-[(S)-4-amino-2-hydroxybutyryl]-kanamycin B and -3',4'-dideoxykanamycin B active against kanamycin-resistant bacteria. J. Antibiotics 26: 412~415, 1973
- 7) See, for instance, KOCH, K. F.; J. A. RHOADES, E. W. HAGAMAN & E. WENKERT: Carbon-13 nuclear magnetic resonance spectral analysis of tobramycin and related antibiotics. J. Am. Chem. Soc. 96: 3300~3305, 1974